Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562889

RESUMO

Wound infections, exacerbated by the prevalence of antibiotic-resistant bacterial pathogens, necessitate innovative antimicrobial approaches. Polymicrobial infections, often involving Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA), present formidable challenges due to biofilm formation and antibiotic resistance. Hypochlorous acid (HOCl), a potent antimicrobial agent produced naturally by the immune system, holds promise as an alternative therapy. An electrochemical bandage (e-bandage) that generates HOCl in situ was evaluated for treatment of murine wound biofilm infections containing both MRSA and P. aeruginosa with "difficult-to-treat" resistance. Previously, the HOCl-producing e-bandage was shown to reduce wound biofilms containing P. aeruginosa alone. Compared to non-polarized e-bandage (no HOCl production) and Tegaderm only controls, the polarized e-bandages reduced bacterial loads in wounds infected with MRSA plus P. aeruginosa (MRSA: vs Tegaderm only - 1.4 log10 CFU/g, p = 0.0015, vs. non-polarized - 1.1 log10 CFU/g, p = 0.026. P. aeruginosa: vs Tegaderm only - 1.6 log10 CFU/g, p = 0.0015, vs non-polarized - 1.6 log10 CFU/g, p = 0.0032), and MRSA alone (vs Tegaderm only - 1.3 log10 CFU/g, p = 0.0048, vs. non-polarized - 1.1 log10 CFU/g, p = 0.0048), without compromising wound healing or causing tissue toxicity. Addition of systemic antibiotics did not enhance the antimicrobial efficacy of e-bandages, highlighting their potential as standalone therapies. This study provides additional evidence for the HOCl-producing e-bandage as a novel antimicrobial strategy for managing wound infections, including in the context of antibiotic resistance and polymicrobial infections.

2.
Antimicrob Agents Chemother ; 68(2): e0121623, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214514

RESUMO

The growing threat of antibiotic-resistant bacterial pathogens necessitates the development of alternative antimicrobial approaches. This is particularly true for chronic wound infections, which commonly harbor biofilm-dwelling bacteria. A novel electrochemical bandage (e-bandage) delivering low-levels of hypochlorous acid (HOCl) was evaluated against Pseudomonas aeruginosa murine wound biofilms. 5 mm skin wounds were created on the dorsum of mice and infected with 106 colony-forming units (CFU) of P. aeruginosa. Biofilms were formed over 2 days, after which e-bandages were placed on the wound beds and covered with Tegaderm. Mice were administered Tegaderm-only (control), non-polarized e-bandage (no HOCl production), or polarized e-bandage (using an HOCl-producing potentiostat), with or without systemic amikacin. Purulence and wound areas were measured before and after treatment. After 48 hours, wounds were harvested for bacterial quantification. Forty-eight hours of polarized e-bandage treatment resulted in mean biofilm reductions of 1.4 log10 CFUs/g (P = 0.0107) vs non-polarized controls and 2.2 log10 CFU/g (P = 0.004) vs Tegaderm-only controls. Amikacin improved CFU reduction in Tegaderm-only (P = 0.0045) and non-polarized control groups (P = 0.0312) but not in the polarized group (P = 0.3876). Compared to the Tegaderm-only group, there was less purulence in the polarized group (P = 0.009). Wound closure was neither impeded nor improved by either polarized or non-polarized e-bandage treatment. Concurrent amikacin did not impact wound closure or purulence. In conclusion, an HOCl-producing e-bandage reduced P. aeruginosa in wound biofilms with no impairment in wound healing, representing a promising antibiotic-free approach for addressing wound infection.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Camundongos , Pseudomonas aeruginosa , Ácido Hipocloroso , Amicacina , Infecções por Pseudomonas/microbiologia , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos , Biofilmes
3.
Bioelectrochemistry ; 148: 108261, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115186

RESUMO

Previously, an electrochemical bandage (e-bandage) that uses a three-electrode system to produce hydrogen peroxide (H2O2) electrochemically on its working electrode was developed as a potential strategy for treating biofilms; it showed activity in reducing biofilms in an agar biofilm model. Xanthan gum-based hydrogel, including NaCl, was used as the electrolyte. While H2O2 generated at the working electrode in the vicinity of a biofilm is a main mechanism of activity, the role of the counter electrode was not explored. The goal of this research was to characterize electrochemical reactions occurring on the counter electrode of the e-bandage. Counter electrode potential varied between 1.2 and 1.5 VAg/AgCl; ∼125 µM hypochlorous acid (HOCl) was generated within 24 h in the e-bandage system. When HOCl was not produced on the counter electrode (achieved by removing NaCl from the hydrogel), reduction of Acinetobacter baumannii BAA-1605 biofilm was 1.08 ± 0.38 log10 CFU/cm2 after 24 h treatment, whereas when HOCl was produced, reduction was 3.87 ± 1.44 log10 CFU/cm2. HOCl inhibited catalase activity, abrogating H2O2 decomposition. In addition to H2O2 generation, the previously described H2O2-generating e-bandage generates HOCl on the counter electrode, enhancing its biocidal activity.


Assuntos
Peróxido de Hidrogênio , Ácido Hipocloroso , Ágar , Bandagens , Catalase , Hidrogéis/farmacologia , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Cloreto de Sódio
4.
Biotechnol Bioeng ; 118(7): 2815-2821, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856049

RESUMO

Chronic wound infections caused by biofilm-forming microorganisms represent a major burden to healthcare systems. Treatment of chronic wound infections using conventional antibiotics is often ineffective due to the presence of bacteria with acquired antibiotic resistance and biofilm-associated antibiotic tolerance. We previously developed an electrochemical scaffold that generates hydrogen peroxide (H2 O2 ) at low concentrations in the vicinity of biofilms. The goal of this study was to transition our electrochemical scaffold into an H2 O2 -generating electrochemical bandage (e-bandage) that can be used in vivo. The developed e-bandage uses a xanthan gum-based hydrogel to maintain electrolytic conductivity between e-bandage electrodes and biofilms. The e-bandage is controlled using a lightweight, battery-powered wearable potentiostat suitable for use in animal experiments. We show that e-bandage treatment reduced colony-forming units of Acinetobacter buamannii biofilms (treatment vs. control) in 12 h (7.32 ± 1.70 vs. 9.73 ± 0.09 log10 [CFU/cm2 ]) and 24 h (4.10 ± 12.64 vs. 9.78 ± 0.08 log10 [CFU/cm2 ]) treatments, with 48 h treatment reducing viable cells below the limit of detection of quantitative and broth cultures. The developed H2 O2 -generating e-bandage was effective against in vitro A. baumannii biofilms and should be further evaluated and developed as a potential alternative to topical antibiotic treatment of wound infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii/crescimento & desenvolvimento , Bandagens , Biofilmes/crescimento & desenvolvimento , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Infecção dos Ferimentos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/terapia , Animais , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...